1GHz INPUT DIVIDE BY 2, 4, 8 PRESCALER IC FOR PORTABLE SYSTEMS

μ PB1509GV is a divide by $2,4,8$ prescaler IC for portable radio or cellular telephone applications. μ PB1509GV is a shrink package version of μ PB587G so that this small package contributes to reduce the mounting space.
μ PB1509GV is manufactured using NEC's high fT NESAT ${ }^{\text {TM }}$ IV silicon bipolar process. This process uses silicon nitride passivation film and gold electrodes. These materials can protect chip surface from external pollution and prevent corrosion/migration. Thus, this IC has excellent performance, uniformity and reliability.

FEATURES

- High toggle frequency : fin $=50 \mathrm{MHz}$ to $700 \mathrm{MHz} @ \div 2$, 50 MHz to $800 \mathrm{MHz} @ \div 4$, 50 MHz to $1000 \mathrm{MHz} @ \div 8$
- Low current consumption
: $5.0 \mathrm{~mA} @ \mathrm{Vcc}=3.0 \mathrm{~V}$
- High-density surface mounting
: 8 pin plastic SSOP (175mil)
- Supply voltage
: $\mathrm{Vcc}=2.2$ to 5.5 V
- Selectable division
$: \div 2, \div 4, \div 8$

APPLICATION

- Portable radio systems
- Cellular/cordless telephone 2nd Local prescaler and so on.

ORDERING INFORMATION

PART NUMBER	PACKAGE	MARKING	SUPPLYING FORM
μ PB1509GV-E1	8 pin plastic SSOP $(175$ mil)	1509	Embossed tape 8 mm wide. Pin 1 is in tape pull-out direction. 1000p/reel.

Remarks : To order evaluation samples, please contact your local NEC sales office. (Part number for sample order: μ PB1509GV)

PIN CONNECTION (Top View)

Pin NO.	Pin Name
1	VCc1
2	IN
3	$\overline{\mathrm{NN}}$
4	GND
5	SW1
6	SW2
7	OUT
8	VCc2

PRODUCT LINE-UP

Product No.	$\begin{gathered} \mathrm{Icc} \\ (\mathrm{~mA}) \end{gathered}$	Vcc (V)	$\begin{gathered} \div 2 \\ \mathrm{fin}^{2} \\ (\mathrm{MHz}) \\ \hline \end{gathered}$	$\begin{gathered} \div 4 \\ \mathrm{fin}^{2} \\ (\mathrm{MHz}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \div 8 \\ \mathrm{fin}^{2} \\ (\mathrm{MHz}) \\ \hline \end{gathered}$	Package	Pin Connection
$\mu \mathrm{PB} 587 \mathrm{G}$	5.5	2.2 to 3.5	50 to 300	50 to 600	50 to 1000	8 pin SOP (225 mil)	NEC Original
μ PB1509 GV	5.0	2.2 to 5.5	50 to 700	50 to 800	50 to 1000	8 pin SSOP (175 mil)	

Remarks

This table shows the TYP values of main parameters. Please refer to ELECTRICAL CHARACTERISTICS. μ PB587G is discontinued.

INTERNAL BLOCK DIAGRAM

SYSTEM APPLICATION EXAMPLE

One of the example for usage

This block diagram schematically shows the μ PB1509GV's location in one of the example application system. The other applications are also acceptable for divider use.

Pin Explanations

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	CONDITION	RATINGS	UNIT
Supply voltage	V_{cc}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	6.0	V
Input voltage	V_{in}	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{SW} 1, \mathrm{SW} 2$ pins	6.0	V
Total power dissipation	PD_{D}	Mounted on double sided copper clad $50 \times 50 \times 1.6$ mm epoxy glass PWB $\left(\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}\right)$	250	mW
Operating ambient temperature	T_{A}		-40 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$		-55 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTICE
Supply voltage	V_{Cc}	2.2	3.0	5.5	V	
Operating ambient temperature	T_{A}	-40	+25	+85	${ }^{\circ} \mathrm{C}$	

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{- 4 0}$ to $+85^{\circ} \mathrm{C}, \mathrm{Vcc}=2.2$ to 5.5 V)

PARAMETERS	SYMBOLS	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Circuit current	Icc	No signals, $\mathrm{V}_{\mathrm{cc}}=3.0 \mathrm{~V}$	3.5	5.0	5.9	mA
Upper Limit Operating Frequency 1	fin(U) 1	$P_{\text {in }}=-20$ to 0 dBm	500	-	-	MHz
Upper Limit Operating Frequency 2	fin(U) ${ }^{\text {a }}$	$\begin{array}{r} \text { Pin }=-20 \text { to }-5 \mathrm{dBm} @ \div 2 \\ @ \div 4 \\ @ \div 8 \end{array}$	$\begin{gathered} 700 \\ 800 \\ 1000 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	—	MHz
Lower Limit Operating Frequency 1	$\mathrm{fin}_{\text {in }}(\mathrm{L})$	$\mathrm{P}_{\text {in }}=-20$ to 0 dBm	-	-	50	MHz
Lower Limit Operating Frequency 2	$\mathrm{fin}_{\text {in }}(\underline{2}$	$\operatorname{Pin}=-20$ to -5 dBm	-	-	500	MHz
Input Power 1	Pin1	$\mathrm{fin}^{\text {}}$ 5 50 MHz to 1000 MHz	-20	-	-5	dBm
Input Power 2	Pin2	$\mathrm{fin}_{\text {i }}=50 \mathrm{MHz}$ to 500 MHz	-20	-	0	dBm
Output Voltage	Vout	$R \mathrm{~L}=200 \Omega$	0.1	0.2	-	Vp-p
Divide ratio control input high	$\mathrm{V}_{\mathbf{H} 1}$	Connection in the test circuit	Vcc	Vcc	Vcc	-
Divide ratio control input low	VIL1	Connection in the test circuit	$\begin{gathered} \text { OPEN } \\ \text { or } \\ \text { GND } \end{gathered}$	$\begin{gathered} \text { OPEN } \\ \text { or } \\ \text { GND } \end{gathered}$	$\begin{gathered} \text { OPEN } \\ \text { or } \\ \text { GND } \end{gathered}$	-
Divide ratio control input high	V_{1+2}	Connection in the test circuit	Vcc	Vcc	Vcc	-
Divide ratio control input low	VIL2	Connection in the test circuit	$\begin{gathered} \text { OPEN } \\ \text { or } \\ \text { GND } \end{gathered}$	OPEN or GND	$\begin{gathered} \text { OPEN } \\ \text { or } \\ \text { GND } \end{gathered}$	-

TEST CIRCUIT

EQUIPMENTS

Signal Generator (HP-8665A)
Counter (HP-5350B) for measuring input sensitivity (Spectrum Analyzer for measuring output frequency)
Oscilloscope for measuring output swing (In measuring output power on Spectrum Analyzer, oscilloscope should be turned off.)

Divide Ratio Setting

		SW2	
		H	L
SW1	H	$1 / 2$	$1 / 4$
	L	$1 / 4$	$1 / 8$

H: SW pin should be connected to Vccc pin.
L: SW pin should be opened or connected to GND.

ILLUSTRATION OF THE TEST CIRCUIT ASSEMBLED ON EVALUATION BOARD

Component List

No.	Value
C1 to C 7	1000 pF
R1	$150 \Omega^{\text {Note }}$

Notes for evaluation board

(1) $35 \mu \mathrm{~m}$ thick double sided copper clad $50 \times 50 \times 0.4 \mathrm{~mm}$ polyimide board
(2) Back side : GND pattern
(3) Solder plated on pattern
(4) $\circ \mathrm{O}$: Through holes
(5) : Remove pattern

Note For Output load of IC, R1 is determined as follows; R1 + Impedance of measurement equipment = 200Ω.

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

The usage and applications of μ PB1509GV should be referred to the application note (Document No. P12611E).

CHARACTERISTIC CURVES

Divide by 2 mode (Guaranteed operating window: $\mathrm{Vcc}=2.2$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Divide by 4 mode (Guaranteed operating window: $\mathrm{Vcc}=2.2$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Divide by 8 mode (Guaranteed operating window: $\mathrm{Vcc}=2.2$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

\mathbf{S}_{11} vs. Input Frequency

S22 vs. Output Frequency

PACKAGE DIMENSIONS (UNIT: mm)

8 PIN PLASTIC SSOP (175 mil)

NOTE ON CORRECT USE

(1) Observe precautions for handling because of electro-static sensitive devices.
(2) Form a ground pattern as wide as possible to minimize ground impedance (to prevent undesired operation).
(3) Keep the wiring length of the ground pins as short as possible.
(4) Connect a bypass capacitor (e.g. 1000 pF) to the Vcc pin.

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered in the following recommended conditions. Other soldering methods and conditions than the recommended conditions are to be consulted with our sales representatives.
μ PB1509GV

Soldering method	$\begin{array}{c}\text { Soldering conditions }\end{array}$	$\begin{array}{c}\text { Recommended } \\ \text { condition symbol }\end{array}$		
Infrared ray reflow	$\begin{array}{l}\text { Package peak temperature: } 235^{\circ} \mathrm{C}, \\ \text { Hour: within } 30 \text { s. (more than } 210^{\circ} \mathrm{C} \text {), } \\ \text { Time: } 3 \text { times, Limited days: } \mathrm{no} .^{*}\end{array}$	IR35-00-3	$]$	VP15-00-3
:---				

* It is the storage days after opening a dry pack, the storage conditions are $25^{\circ} \mathrm{C}$, less than $65 \% \mathrm{RH}$.

Caution The combined use of soldering method is to be avoided (However, except the pin area heating method).

For details of recommended soldering conditions for surface mounting, refer to information document SEMICONDUCTOR DEVICE MOUNTING TECHNOLOGY MANUAL (C10535E).

NEC μ PB1509GV
[MEMO]

No part of this document may be copied or reproduced in any form or by any means without the prior written consent of NEC Corporation. NEC Corporation assumes no responsibility for any errors which may appear in this document.
NEC Corporation does not assume any liability for infringement of patents, copyrights or other intellectual property rights of third parties by or arising from use of a device described herein or any other liability arising from use of such device. No license, either express, implied or otherwise, is granted under any patents, copyrights or other intellectual property rights of NEC Corporation or others.
While NEC Corporation has been making continuous effort to enhance the reliability of its semiconductor devices, the possibility of defects cannot be eliminated entirely. To minimize risks of damage or injury to persons or property arising from a defect in an NEC semiconductor device, customers must incorporate sufficient safety measures in its design, such as redundancy, fire-containment, and anti-failure features.
NEC devices are classified into the following three quality grades:
"Standard", "Special", and "Specific". The Specific quality grade applies only to devices developed based on a customer designated "quality assurance program" for a specific application. The recommended applications of a device depend on its quality grade, as indicated below. Customers must check the quality grade of each device before using it in a particular application.

Standard: Computers, office equipment, communications equipment, test and measurement equipment, audio and visual equipment, home electronic appliances, machine tools, personal electronic equipment and industrial robots
Special: Transportation equipment (automobiles, trains, ships, etc.), traffic control systems, anti-disaster systems, anti-crime systems, safety equipment and medical equipment (not specifically designed for life support)
Specific: Aircrafts, aerospace equipment, submersible repeaters, nuclear reactor control systems, life support systems or medical equipment for life support, etc.
The quality grade of NEC devices is "Standard" unless otherwise specified in NEC's Data Sheets or Data Books. If customers intend to use NEC devices for applications other than those specified for Standard quality grade, they should contact an NEC sales representative in advance.
Anti-radioactive design is not implemented in this product.

